Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Inflammopharmacology ; 31(3): 1167-1182, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2257642

ABSTRACT

The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-ß (TGF-ß) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-ß, interleukins (IL-6 and IL-1ß), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-ß/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Humans , Thalidomide/therapeutic use , Thalidomide/metabolism , Thalidomide/pharmacology , Pandemics , COVID-19/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Inflammation/metabolism , Transforming Growth Factor beta/metabolism , Lung
2.
Eur J Pharmacol ; 896: 173922, 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-1252813

ABSTRACT

The coronavirus disease (COVID-19) is spreading between human populations mainly through nasal droplets. Currently, the vaccines have great hope, but it takes years for testing its efficacy in human. As there is no specific drug treatment available for COVID-19 pandemic, we explored in silico repurposing of drugs with dual inhibition properties by targeting transmembrane serine protease 2 (TMPRSS2) and human angiotensin-converting enzyme 2 (ACE2) from FDA-approved drugs. The TMPRSS2 and ACE2 dual inhibitors in COVID-19 would be a novel antiviral class of drugs called "entry inhibitors." For this purpose, approximately 2800 US-FDA approved drugs were docked using a virtual docking tool with the targets TMPRSS2 and ACE2. The best-fit drugs were selected as per docking scores and visual outcomes. Later on, drugs were selected on the basis of molecular dynamics simulations. The drugs alvimopan, arbekacin, dequalinum, fleroxacin, lopinavir, and valrubicin were shortlisted by visual analysis and molecular dynamics simulations. Among these, lopinavir and valrubicin were found to be superior in terms of dual inhibition. Thus, lopinavir and valrubicin have the potential of dual-target inhibition whereby preventing SARS-CoV-2 entry to the host. For repurposing of these drugs, further screening in vitro and in vivo would help in exploring clinically.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 Drug Treatment , COVID-19 , Doxorubicin/analogs & derivatives , Lopinavir/pharmacology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Virus Internalization/drug effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Doxorubicin/pharmacology , Drug Repositioning , Enzyme Inhibitors/classification , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Topoisomerase II Inhibitors/pharmacology
3.
F1000Res ; 9: 1166, 2020.
Article in English | MEDLINE | ID: covidwho-934653

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.


Subject(s)
Antiviral Agents , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Humans , Molecular Docking Simulation , Pandemics , Pentanoic Acids/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Quinolones/pharmacology , SARS-CoV-2 , COVID-19 Drug Treatment
4.
Arch Med Res ; 52(1): 38-47, 2021 01.
Article in English | MEDLINE | ID: covidwho-773866

ABSTRACT

BACKGROUND AND AIMS: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) induced Novel Coronavirus Disease (COVID-19) has currently become pandemic worldwide. Though drugs like remdesivir, favipiravir, and dexamethasone found beneficial for COVID-19 management, they have limitations clinically, and vaccine development takes a long time. The researchers have reported key proteins which could act as druggable targets. Among them, the major protease Mpro is first published, plays a prominent role in viral replication and an attractive drug-target for drug discovery. Hence, to target Mpro and inhibit it, we accomplished the virtual screening of US-FDA approved drugs using well-known drug repurposing approach by computer-aided tools. METHODS: The protein Mpro, PDB-ID 6LU7 was imported to Maestro graphical user interphase of Schrödinger software. The US-FDA approved drug structures are imported from DrugBank and docked after preliminary protein and ligand preparation. The drugs are shortlisted based on the docking scores in the Standard Precision method (SP-docking) and then based on the type of molecular interactions they are studied for molecular dynamics simulations. RESULTS: The docking and molecular interactions studies, five drugs emerged as potential hits by forming hydrophilic, hydrophobic, electrostatic interactions. The drugs such as arbutin, terbutaline, barnidipine, tipiracil and aprepitant identified as potential hits. Among the drugs, tipiracil and aprepitant interacted with the Mpro consistently, and they turned out to be most promising. CONCLUSIONS: This study shows the possible exploration for drug repurposing using computer-aided docking tools and the potential roles of tipiracil and aprepitant, which can be explored further in the treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Repositioning/methods , Protease Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Humans , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Molecular Targeted Therapy , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL